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Dynamic analysis of an inflatable dam subjected to a flood
K. Lowery, S. Liapis

Abstract A dynamic simulation of the response of an
in¯atable dam subjected to a ¯ood is carried out to de-
termine the survivability envelope of the dam where it can
operate without rupture, or over¯ow. The free-surface ¯ow
problem is solved in two dimensions using a fully non-
linear mixed Eulerian-Lagrangian formulation. The dam is
modeled as an elastic shell in¯ated with air and simply
supported from two points. The ®nite element method is
employed to determine the dynamic response of the
structure using ABAQUS with a shell element. The prob-
lem is solved in the time domain which allows the pre-
diction of a number of transient phenomena such as the
generation of upstream advancing waves, the dynamic
structural response and structural failure. Failure takes
place when the dam either ruptures or over¯ows. Stresses
in the dam material were monitored to determine when
rupture occurs. An iterative study was performed to ®nd
the serviceability envelope of the dam in terms of the in-
ternal pressure and the ¯ood Froude number for two ¯ood
depths. It was found that existing in¯atable dams are quite
effective in suppressing ¯oods for a relatively wide range
of ¯ood velocities.

Symbols
h, d The initial upstream water height

(depth)
L Tank length for the ¯uid solution
Fn � UB=

����������
g � h

p
Froude number (non-dimensional
velocity)

UB Upstream velocity (towing velocity)
R Semi-circular obstruction height

(radius)
g The acceleration due to gravity
q Density of water

a � R
h Non-dimensional dam or obstruction

height
t Time
/ The velocity potential
w The stream function
r The gradient operator
D/Dt The substantial derivative
x, y The x and y Cartesian coordinates of a

point
n The unit normal to a surface
n1 The x component of the unit normal to

a surface
n2 The y component of the unit normal to

a surface
i The imaginary number given by

p�ÿ1�
or an integer depending on context

z � x� iy The complex coordinate
b � /� iw The complex potential
C In¯uence coef®cient
Ld Desingularization distance
p The value for Pi (3.141592654...)
c The local wave velocity
P Pressure
g Free surface elevation
h Angle varying from zero on the leading

edge to p on the trailing edge of the
obstruction

Cp � P=qgh Pressure coef®cient
Cd � drag=qgh2 Drag coef®cient
C1 � lift=qgh2 Lift coef®cient
PE Potential energy
KE Kinetic energy

1
Introduction
In¯atable dams are cylindrical in shape and attached to a
foundation strip. They can be in¯ated with air, ®lled with
water, or pressurized with a combination of air and wa-
ter. Their height can be up to six meters and their length
up to one hundred ®fty meters. They may be anchored to
a speci®cally made reinforced-concrete foundation strip
or an existing base, like the crest of a dam. They are
usually constructed of a nylon reinforced polymer. In-
¯atable dams are relatively easy to install, do not corrode,
require little maintenance, and can handle extreme tem-
peratures. They can be covered with impact resistant tiles
to prevent them from being punctured by gun®re and
other debris.
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In¯atable dams are currently used in a number of water
control applications. These ¯exible structures may be used
to temporarily store water or serve as dykes. In permanent
applications, they can be used to direct water in irrigation,
control water level in a hydroelectric facility, or raise the
height of an existing dam. Several thousand in¯atable
dams are in use today. A 640-meter long string of seven
in¯atable dams is in place on the Susquehanna River in
Pennsylvania to create Lake Augusta. Each segment is
connected by concrete pylons to create a continuous dam.
Some of the ¯ow in the Santa Ana River in California is
diverted by an in¯atable dam to recharge groundwater. A
large project to create a 220 surface-acre (850 feet wide by
2 miles long) lake in Tempe Arizona using in¯atable dams
is currently underway. Figure 1 shows an artist's rendition
of this project. The city will construct a string of many 240
feet long in¯atable dam sections ranging from six to six-
teen feet in diameter. A one-inch wall thickness will be
used over the entire dam. It is interesting to note that one
section of the dam will be allowed to over¯ow at a con-
trolled rate to produce a scenic cascade. Water will then be
pumped back into to the lake to prevent runoff. The total
construction cost of the dam is estimated to be forty
million dollars. Many other examples of successful dams
can be found worldwide. A few in¯atable dams have failed
during service. The Mangla Dam in Pakistan (see Binnie
et al. 1973), became dynamically unstable and failed under
over¯ow conditions.

Currently, in¯atable dams are not used to suppress
¯oods in emergencies. It is desirable to extend their use for
this purpose. These dams could be placed along river
banks to protect homes, businesses, industries, and towns
from ¯ooding. They could be de¯ated when not needed, to
provide access and views, and then in¯ated when ¯ooding
is imminent. This requires some research to predict the
dynamic response of the structure to ¯ood conditions
which is the objective of the present study.

Several authors have reported analytical results on in-
¯atable dams. For example, Hsieh and Plaut (1990), and
Al-Brahim (1994) analyzed the free vibrations of in¯atable
dams in two dimensions while Dakshina-Moorthy et al.
(1995) and Mysore et al. (1998) studied free, three-
dimensional vibrations of in¯atable dams. Alwan (1986,
1988) performed modal analysis of an in¯atable dam
subjected to a ¯ood. Wu and Plaut (1996) analyzed small
vibrations of an in¯atable dam under over¯ow conditions.

Also related to the present work, are studies of the
dynamic characteristics of structures in air or in contact
with water which have been carried out for a number of
different practical applications. Kjellgren and Hyvarinen
(1998) used a ®nite element numerical solution of the
Navier-Stokes equations to compute the ¯ow around
moving structures such as sports car sections in two
dimensions. Experimental data as well as numerical pre-
dictions of the natural frequencies and mode shapes of a
¯exible cylinder vibrating in air and in water were pre-
sented by Ergin et al. (1992). The dynamic response of a
offshore platform subjected to random forces from waves
was analyzed by Venkataramana and Kawano (1996). In a
recent study, Nawrotzki et al. (1998) analyzed the elastic
and inelastic response of shells using incremental path-
following algorithms.

In this study, a dynamic simulation of the response of
an in¯atable dam subjected to a ¯ood is carried out. Un-
like the previous studies which solved the problem in the
frequency domain, in the present work a fully nonlinear
time-domain analysis is used. This allows for the predic-
tion of large unsteady motions of the dam including cases
where the dam ruptures or over¯ow occurs.

The problem of a ¯ood impinging on an in¯atable dam
is assumed to be two-dimensional. In this study, a ¯ood is
taken to be a uniform stream of water striking the dam.
The ¯ood is assumed to start with a uniform depth of 2.0
or 3.0 meters, and a uniform velocity. The ¯ow a suf®cient
distance ahead of the dam retains this initial velocity and
depth. The analysis begins when the front of the ¯ood is
completely in contact with the dam.

The dam is anchored to the bottom at two points using
pinned boundary conditions. Its stress free shape (initial
shape) is that of a large semicircle. The dam has a uniform
thickness and is comprised of nylon reinforced rubber.
The dimensions and material properties of the structure
used in the present study are representative of existing
structures. Figure 2 illustrates the design of a typical in-
¯atable dam. The dam is supported by an applied internal
pressure ranging from a pressure of 1.0 to 5.0 meters of
water. This internal pressure provides most of the stiffness
required to repel a uniform ¯ood applied to one side of the
dam.

This problem has two distinct parts: nonlinear free-
surface ¯ow, and elastic structural dynamics. These two
problems are coupled and must be solved simultaneously.
Transient, fully nonlinear computations for the ¯uid ¯ow
are performed using a mixed Eulerian-Lagrangian for-
mulation. The dam is modeled as an elastic shell in¯ated
with air and simply supported from two points. The ®nite
element method is employed to determine the dynamic
response of the structure using ABAQUS with a shell

Fig. 1. Artist's rendition of the in¯atable dam built to create a
220 surface-acre man made lake in Tempe, Arizona
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element. A numerical towing tank with the in¯atable dam
on the downstream boundary and open boundary condi-
tions on the upstream vertical boundary has been devel-
oped to simulate the ¯uid ¯ow. The computer simulation
``tows'' the ¯exible dam at a steady Froude number. The
¯uid dynamics program determines the free-surface ele-
vation and calculates the external pressure acting on the
dam surface at each time step. This pressure is then used
as an input by the ABAQUS model at each time step to
determine the deformation and the velocities along the
dam surface and the stresses in the dam. This information
is used by the ¯uid dynamics program in the next time
step to continue the dynamic analysis. The data for the
response of the free surface is translated to a coordinate
frame moving with the structure to show how the free
surface develops over time.

The simulation was run over a range of Froude numbers
to determine the internal pressures where the structure
failed. Failure takes place when the dam either ruptures or
over¯ows. Rupture is caused by too high an internal
pressure. Over¯ow, on the other hand, is caused by too low
an internal pressure, or too high a Froude number. Thus, a
serviceability envelope is formed where the dam can op-
erate safely. Two envelopes were developed corresponding
to upstream ¯ood depths of 2.0 and 3.0 meters.

The paper is organized as follows. Section 2 contains the
mathematical formulation and numerical procedures for
analyzing the ¯uid ¯ow and the structural response. In
Sect. 3 the numerical results for the ¯uid ¯ow, the struc-
tural response and the operational envelope are presented.
Concluding remarks are given in Sect. 4.

2
Fluid±structure interaction study
This problem can be separated into two parts at each time
step. The ¯uid dynamic ¯ow will be described ®rst, fol-
lowed by the structural analysis. The last section will
describe how the solutions of these problems are coupled
to produce the fully dynamic simulation.

2.1
Mathematical formulation of the fluid flow
The unsteady, two-dimensional potential ¯ow of an in-
viscid, incompressible ¯uid induced by the motions of the
¯exible boundary, is analyzed. Under the usual assump-
tions of a two-dimensional, inviscid, irrotational ¯ow, the

problem may be described by a velocity potential, /, and a
stream function, w. The velocity potential, /, is de®ned so
that the ¯uid velocity vector is given by:

~V � ~r/

Instead of analyzing a uniform ¯ow incident on the ¯exible
structure, the interaction of an initially stationary ¯uid
with a ¯exible structure moving to the left at a constant
speed, UB is considered. A stationary x-y coordinate sys-
tem is used with y positive upwards and the x axis coin-
ciding with the upper left corner of the undisturbed free
surface.

The ¯uid domain is bounded by the free surface, the
¯exible boundary surface, the bottom and the far-®eld
upstream boundary. Figure 3 shows the numerical tank
layout. Non-dimensional variables are chosen such that
the initial ¯uid depth, the acceleration of gravity and the
¯uid density are equal to one. The ¯uid ¯ow solution is
non-dimensionalized to allow easy application of various
depths. The ¯uid ¯ow problem may be described in terms
of two non-dimensional parameters. A depth-based Fro-
ude number is de®ned as Fn � UB=

����������
g � h

p
, where UB is

the uniform upstream velocity, h is the uniform upstream
depth, and g is the gravitational acceleration. The non-
dimensional dam height is given as a � R

h where R is the
radius of the dam.

In the ¯uid domain R, the velocity potential /, must
satisfy the Laplace equation:

r2/ � 0 �1�
On the free surface, CF, the kinematic boundary conditions
are:

DX

Dt
� o/

ox
and

DY

Dt
� o/

oy
�2�

where X, Y are the x and y coordinates of the particle on
the free surface. The dynamic free-surface condition is
given by Bernoulli's equation:

D/
Dt
� ÿg� �r/�2

2
�3�

where D is the substantial derivative, x and y are the co-
ordinates of the position of a ¯uid particle, and g is the
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Fig. 2. Sketch of a typical in¯atable dam illustrating some basic
parameters in¯uencing dam performance

Upstream boundary
with open boundary
conditions (CU)

Right hand boundary is translated
to the left at the chosen flood
velocity (V) and deforms with dam.

The fluid boundary is descretized into straight
line segments or panels joined together at nodes.
Note: only some nodes are shown for illustration.

Free surface (CF)

V

Fig. 3. Numerical towing tank layout
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free surface elevation. On the ¯exible boundary surface,
CS, the ¯uid ¯ow satis®es the no-penetration condition:

o/
on
� ow

os
� �ud ÿ UB�n̂1 � vdn̂2 �4�

where UB is the velocity of the boundary, s is the arclength
along the boundary and n is the unit normal with com-
ponents n1 and n2 in the x and y directions respectively. ud

and vd are the components of the velocity of the ¯exible
structure due to deformation in the x and y directions,
respectively. On the ¯at bottom, CB:

o/
on
� ow

os
� 0 �5�

The complex coordinate is de®ned as z � x� iy, and the
complex velocity potential, b, as b�z� � /�z� � iw�z�.
Since b is analytic in the ¯uid domain, it satis®es Cauchy's
integral theorem:I

C

b�z�
�zÿ zk� dz

�
0 for zk outside the fluid domain �6a�
ÿiak b�zk� for zk on the fluid boundary �6b�
2pib�zk� for zk inside the fluid domain �6c�

8><>:
where the contour C consists of the free surface, CF, the
bottom, CB, the ¯exible boundary surface, CS, and the
upstream boundary. zk is an arbitrary control point. The
contour C is traversed such that the region R always lies to
its left and ak is the angle between two elements adjacent
to zk on the contour. For a smooth contour ak � ÿp.

A mixed Eulerian-Lagrangian (MEL) formulation is
employed to solve the boundary value problem (1)±(5).
This method has been used very successfully to predict a
variety of nonlinear wave phenomena by a number of
investigators (Longuet-Higgins and Cokelet 1976, Vinje
and Brevig 1981, Lin 1984, Cointe 1989, Muthedath 1992).
This method involves an Eulerian and a Lagrangian step.
At each instant of time, the integral equation (6b) is solved
numerically (Eulerian step). On some portions of the
boundary u is known (C/ boundary) while on others w is
known (Cw boundary). On the free surface u is given by
Eq. (3) while on the ¯at bottom w is zero and on the
bottom obstacle surface w is given from Eq. (4). After
solving the boundary value problem at each time step, the
free surface conditions (2) and (3) are stepped forward in
time to update the positions and the values of the velocity
potential of particles of ®xed identity (Lagrangian step).
Only a brief description of the MEL formulation will be
given here. More details may be found in Vinje and Brevig
1981 and Muthedath 1992.

2.1.1
Numerical implementation
The boundary C is divided into elements (panels). Figure 2
shows the layout of the tank and boundary elements.
Within each panel, the complex potential, b�z�, is assumed
to vary linearly with z. This can be expressed as:

b�z� � zÿ zj

zjÿ1 ÿ zj
bjÿ1 �

zÿ zjÿ1

zj ÿ zjÿ1
bj �7�

This approximation of b�z� reduces the problem of ®nding
a continuous potential to determining the unknown nodal
values bj. These are found by collocation, that is, by sat-
isfying the integral Eq. (6) at the panel vertices. The result
is a set of linear equations that can be solved for the un-
known bs

j . If Eq. (7) is substituted into Eq. (6a), a dis-
cretized form of the integral equation is found:I

C

b�z�
�zÿ zk� dz �

XN

j�1

Ck;jbj � 0 �8�

where the in¯uence coef®cients are given by:

Ck;j � zk ÿ zjÿ1

zj ÿ zjÿ1

� �
ln

zj ÿ zk

zjÿ1 ÿ zk

� �

� zk ÿ zj�1

zj ÿ zj�1

� �
ln

zj�1 ÿ zk

zj ÿ zk

� �
�9�

zj and zk are the nodal and control point locations, re-
spectively.

The ¯uid boundary consists of portions where / is
known (C/ boundary) and portions where w is known (Cw
boundary). At the free surface, the velocity potential / is
known (C/ boundary) while on the bottom, the upstream
boundary, and the ¯exible surface of the structure the
stream function w is known (Cw boundary). The applica-
tion of the boundary conditions is done by setting the
appropriate terms in Eq. (8) to zero as follows:

Re
XN

j�1

Ck;jbj

( )
� 0 for zk on C/ (10a)

Re i
XN

j�1

Ck;jbj

( )
� 0 for zk on Cw (10b)

Special attention to the nodes at the intersection of the free
surface with the upstream boundary and the surface of the
structure is required. At these points, / and w are com-
pletely known. No equation corresponding to / or w on
that point is used. This has been shown to be an effective
treatment (see Lin 1984).

The ¯exible obstruction making up the right hand
boundary is translated towards the left end of the tank to
simulate ¯ood conditions. Time stepping of Eqs. (2) and
(3) is performed by Hamming's fourth order predictor/
corrector method. A Runge-Kutta fourth order method is
employed for the ®rst four time steps to provide the initial
starting data for use with Hamming's method. A non-
dimensional time step of 0.05 seconds is used. The struc-
ture is started from rest with a velocity ramp. During this
acceleration phase, the velocity is gradually increased in a
linear fashion to its ®nal value. It was found that a velocity
increase of 0.05 Fn per time step provides a smooth
startup.

Detailed accuracy and convergence tests were carried
out to determine the numerical tank length, the panel
arrangement and the time step size for the numerical
simulations. Since the right boundary is moving to the
left, the length, L of the numerical towing tank reduces
with time. For the numerical results presented in this
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study, the length of the tank was chosen equal to 40
times the ¯uid depth. This value of L was suf®cient to
provide the desired results before the computational
domain became too short. A total of 509 nodes were used
for the simulations presented here. 300 nodes were used
on the free surface, 6 were used on the upstream boun-
dary, 201 were used on the bottom boundary and 6 were
used on the surface of the structure. This created 299, 5,
200, and 5 panels on the free surface, upstream boun-
dary, bottom boundary, and structure surface, respec-
tively. The nodes were spaced to provide uniform panel
lengths on the computational boundary. Note that the
panel lengths are not necessarily equal on the boundary
segments.

2.1.2
Smoothing and node distribution on the free surface
Nodes on the free surface and the bottom boundary were
redistributed at each time step to retain equal panel
lengths on these boundaries as the tank length decreased.

Nodes on the free surface are smoothed every ®ve time
steps using a ®fth order smoothing formula developed by
Longuet-Higgins and Cokelet (1976)

�yi � 1
16 ÿyiÿ2 � 4yiÿ1 � 10yi � 4yi�1 ÿ yi�2� � �11�

where the subscript i indicates the ith node, iÿ 1 is the
previous node and so forth. Smoothing is necessary to
suppress short wave, saw-tooth instabilities that are re-
lated to numerical error. This formula worked very well
and suppressed all saw-tooth instability seen in this study.
No adverse effects of smoothing such as introduction of
numerical damping or dissipation to the numerical solu-
tion were observed.

2.1.3
Upstream boundary condition
A satisfactory treatment of the upstream boundary is of
fundamental importance to the success of the numerical
simulations. In this work, a Sommerfeld radiation condi-
tion is imposed at the upstream boundary in a manner
similar to what has been used in other problems (Orlanski
1976). The following condition is imposed:

ow
ot
� c

ow
ox
� 0 �12�

where c is the local wave velocity. This condition makes
the upstream boundary transparent to all waves of ve-
locity c, thus eliminating re¯ections. The local wave ve-
locity, c is in the general case unknown. Some authors
(Han et al. 1983) suggested a numerical method of cal-
culating c. In the present study, c is set equal to the phase
velocity

�����
gh

p � 1 (unit depth and gravitational accelera-
tion have been assumed). The numerical method used to
apply Eq. (12) involves adding a column of points just
inside the upstream and downstream boundaries. Then a
®nite difference scheme is employed to ®nd the spatial
and temporal derivatives of w�z�. For the time derivative,
a backward difference scheme was used. For the spatial
derivative, a forward difference scheme was used. This
gives:

w�xu; yu; t� ÿ w�xu; yu; t ÿ Dt�
Dt

� c
w�xu � Dx; yu; t ÿ Dt� ÿ w�xu; yu; t ÿ Dt�

Dx
� 0

�13�
Rearranging to determine the nodal value of w�xu; yu; t�,
w�xu; yu; t� � w�xu; yu; t ÿ Dt�

ÿ c
Dt

Dx
w�xu � Dx; yu; t ÿ Dt��

ÿ w�xu; yu; t ÿ Dt�� �14�
where xu, yu is the coordinate of a node on the upstream
boundary (xu � 0), t is the current time in the simulation,
Dt is the time step interval, and Dx is the distance of the
additional points from the upstream boundary. The value
of Dx used was 5 times the upstream depth. As usual, this
optimum value for Dx was determined by trial and error.
This scheme was tested, using both ®rst and second order
difference schemes to approximate the derivatives of w�z�,
and various ways to determine the propagation velocity, c.
The method shown and the simple choice of c � 1 was
found to be superior and reduces the re¯ected waves to a
minimum.

At each time step (t ÿ Dt) after solving for the value of
w on the boundary nodes, the value of w on the interior
points, w�xu � Dx; yu; t ÿ Dt� is determined using Eq. (6c).
Then Eq. (14) is used to update the value of w�xu; yu; t� at
the nodes making up the upstream boundary at each time
step.

2.1.4
Calculation of the pressure acting on the dam
The pressure over the surface of the structure is found
using Bernoulli's equation:

P �
�
ÿ ou

ot
ÿ �r/�2

2
ÿ �yÿ g�

�
�15�

In order to evaluate the time derivative of the velocity
potential, ut, we observe that the time derivative of the
complex velocity potential, bt, is analytic in the ¯uid do-
main. Therefore at each time step in a manner similar to
the b problem, Eq. (6b) is solved for the unknown values
of bt. When solving for the time derivative bt, on some of
the boundaries ut is known while on others wt is known ,
similar to the b problem. On the free surface ut is given by
Eq. (3) as:

o/
ot
� ÿgÿ �r/�2

2

On the far-®eld boundaries wt is given from Eq. (12). On
the ¯at bottom wt is zero, while on the structure a divided
difference formula is used to evaluate wt .

2.2
Structural analysis
The dam is modeled as a thin elastic shell and is analyzed
using the ®nite element method. The ®nite element
package ABAQUS is used for both the static and dynamic

56



analysis. One hundred four-node thin shell elements (the
S4R type described in the ABAQUS manual see Hibbitt
et al. 1994) arranged along the circumference are em-
ployed. The elements have a uniform thickness of 1.27 cm
and uniform material properties. The dam is anchored to
the bottom at two points using pinned boundary condi-
tions. Its stress free shape (initial shape) is that of a large
semicircle. It is comprised of nylon reinforced rubber and
has a uniform thickness of 1.27 cm. The dam is supported
by an applied internal pressure ranging from a pressure of
1.0 to 5.0 meters of water. This internal pressure provides
nearly all the stiffness required to repel a uniform ¯ood
applied to the one side of the dam. Table 1 contains the
dimensions and material properties of the dam used in this
study. These values are typical of existing structures.

The end points of the structure are anchored to the
bottom using pinned boundary conditions. Since the
problem is two-dimensional, the nodes are restrained from
moving in the z direction. A uniform pressure is applied to
the inside face of each element. The compressibility of the
internal air was taken into account by assuming that it
behaves isothermally. Hence, the internal pressure is not
constant but is determined from the relation (pressure ´
volume) = c. The isothermal constant c is determined by
taking the product of the initial prescribed pressure and
the static volume of the dam. Then the value for the in-
ternal pressure at any point during the simulation may be
found by dividing this constant by the new volume of the
dam. The pressure caused by the effects of the external
¯uid (¯ood) is subtracted from the internal base pressure
to obtain the pressure exerted on the dam. This pressure is
distributed appropriately over elements making up the
dam in the ABAQUS model.

2.3
Fluid±structure interaction
Values for the structural properties of the dam material,
initial dam shape, the initial (base) internal dam pressure,
the ¯ood Froude number and the initial ¯ood depth are
input into a preprocessor. The preprocessor takes these
values and creates the ABAQUS ®nite element model.
Since the dam is initially started from rest, a static analysis
must be performed ®rst to determine the static shape of
the dam produced by the in¯uence of the external hy-
drostatic pressure and the internal in¯ation pressure. The
hydrostatic pressure is found directly from the formula:
Pstat � qgdave, where q is the density of water (1000 Kg/
m3), g is the gravitational acceleration (9.81 m/s2), and dave

is the average depth of each submerged element in the
ABAQUS model. Figure 4 illustrates the application of the
pressures on the structural model. The total pressure
acting on each element is found by subtracting the static
pressure, Pstat, from the internal pressure, Pint.

Once the static shape of the dam is found, the dynamic
simulation is started. The translational velocity of the dam
is smoothly started from rest to the ®nal Froude number
desired for each run. The two parts of the problem, the
nonlinear free-surface ¯ow and the structural deformation
are coupled and must be solved simultaneously. The ¯uid
¯ow depends on the structural deformation while the
structural deformation depends on the ¯uid forces. There
are many different methods for simulating such coupled
¯uid-structure interaction problems. In the present work,
the ¯uid ¯ow problem is solved ®rst at each instant of time
t. The new free surface shape, and the new pressure dis-
tribution acting on the dam are obtained. The total pres-
sure acting on each element of the structure is found by
subtracting the external pressure, Pdyn found by the ¯uids
code from the isothermal internal pressure, Piso:Ptot =
Piso ) Pdyn. The total pressure is used to create an ABA-
QUS restart ®le to perform a dynamic analysis over one
time step. The ABAQUS dynamic analysis computes the
stresses in the dam material as well as the new dam shape,
and the velocity distribution for the next time step
(t � Dt). After updating the shape of the structure, the new
values of the stream function w are found by integrating
Eq. (4) numerically. At the next time step (t � Dt) the
entire procedure is repeated.

Figure 4 illustrates this method of solving the coupled
¯uid-structure interaction problem. More involved
schemes to couple the ¯uid and structural solutions were
considered such as iterating a few times between the two
problems within each time step. The accuracy improve-
ment using such schemes was found to be insigni®cant.

2.4
Failure criterion
Failure may occur in one of two ways, over¯ow and rup-
ture. Over¯ow occurs when water ¯ows over the dam.
Rupture occurs when the breaking stress for the dam
material is reached. The critical stress used here is
19.65 MPa. This stress is obtained by using a simple rule of
mixtures to a rubber and nylon laminate (86% rubber,
14% nylon) typically used in the construction of in¯atable
dams.

2.4.1
Determination of the failure envelope
Failure is governed by three parameters: the internal dam
pressure the ¯ood depth and the ¯ow Froude number. Two
¯ood depths were chosen for this study, 2.0 and 3.0 meters.
A serviceability envelope was produced for each depth.
This envelope is the region of the internal pressure versus
¯ood Froude number where the in¯atable dam does not
fail due to either over¯ow or rupture. A similar envelope
could be developed for internal pressure versus ¯ood
depth, but was not done in this study.

The upper limit of the failure envelope corresponding
to the internal pressure when the dam ruptures under

Table 1. In¯atable dam properties

Property Value

Dam design Initial radius 4.5 m
Initial thickness 1.27 cm
Anchoring type Double pinned

Material Density 100 000 kg/sq m
Poisson's ratio 0.45
Modulus of elasticity 103.4 MPa
Rupture stress 19.65 MPa
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hydrostatic pressures was found by iteratively running
the static ®nite element model. Different values for the
internal pressure were used until two values were ob-
tained, one on each side of the rupture line, which only
had a two percent difference. The lower limit of the
failure envelope where the dam just over¯ows was found
by running the full ¯uid structure interaction model in
similar fashion as before while the Froude number was
held at a ®xed value. When the internal pressure re-
quired to suppress the ¯ood exceeded the rupture value,
the maximum ¯ood Froude number sustainable had
been reached, and the failure envelope was completely
de®ned.

3
Numerical results

3.1
Fluid response
Figure 5 shows a sample displacement pro®le for a typical
run in which the dam does not fail in over¯ow or rupture.

As an alternative representation, Fig. 6 depicts the motion
in a pro®le-temporal plot. As seen in these ®gures a bore of
water is rejected to the left. Initially the ¯ood pushes the
dam to the right and subsequently the dam oscillates back
and forth. This oscillation causes small waves to occur on
top of the bore right next to the dam. As time progresses,
the water height in front of the dam reaches a steady value.
This height depends on the depth-based Froude number of
the ¯ood. The primary contribution to the forces exerted
on the dam is from the hydrostatic pressure increase due to
this increase in water level immediately in front of the dam.

Figure 7 is a sample free surface pro®le for a rigid dam
illustrating the formation of a jet of water where the free
surface contacts the dam. There is a jet of water pro-
duced when the ¯ood ®rst strikes the dam in the rigid
case but not the ¯exible case. A jet occurs in many
nonlinear free surface problems; see for example the
water entry problem analyzed by Hughes (1973). The jet
does not form in the case of a ¯exible dam since the
structure deforms away from the jet and in a sense
damps it out.

Fluid - Structure interaction problem

Flood speed

Flexible inflatable dam
oscillates in response to
the impinging flood.

Upstream
boundary
with open
boundary
conditions

Right hand boundary
is translated to the left
at the chosen flood
velocity (V) and
deforms with dam.

V

The fluid boundary is
descretized into straight
line segments or panels
joined together at nodes.
Note: only some nodes
are shown for illustration.

Free surface

Fluids towing tank simulator model

The flexible dam is comprised
of 100 ABAQUS S4R shell elements.
Note: There are no elements
on the bottom since it is not flexible.

Uniform pressure is applied across
each element. This pressure is the total
of the internal, hydrostatic, and
hydrodynamic pressures.

Pinned
boundary
conditions
at edges

ABAQUS finite element dynamic analysis model

Fluid - structure coupling

The models are coupled
at the contacting edge

which deforms with
the dam.

Boundary shape, and
velocity distribution found
using ABAQUS model are
applied to the fluids model

Pressure distribution and
free surface contact point

found using the fluids model
are applied to ABAQUS model

Fluid - structure interaction problem is
split into two parts: the fluid flow, and
the forced dynamic structural response.
These parts are solved by coupling a potential
flow towing tank simulator and an ABAQUS
finite element model
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D
ep

th

Fig. 4. Solving the ¯uid structure-interaction problem
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3.2
Structural response

3.2.1
Motion of the dam
Figures 5 and 6 show the motion of a dam for no over¯ow.
As seen in the ®gure, the dam is pushed away from the
¯ood and oscillates. The magnitude of the oscillations
depends primarily on the internal pressure. As the internal

pressure is increased, the oscillations decrease in magni-
tude, until they are hardly seen at all. At this point, the
response of the ¯ood closely resembles the results for the
case of a rigid dam. A low pressure reduces the dam's
ability to suppress the ¯ood.

When the internal pressure is brought below a certain
value, the dam can no longer hold back the ¯ood, and
over¯ow occurs. Figure 8 is a sample plot of an in¯atable
dam starting to over¯ow. Over¯ow is seen in this study as
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The flood in this plot is running from left to right. A sufficient distance from the dam it has a depth of 3.0
meters and Froude number (non-dimensional velocity) of 0.2. The dam is 4.5 meters tall and has an
intemal pressure of 1.20 meters of water. After startup, the flood pushes  the dam to the right.
The floodwaters pile up in front of the dam and a left running bore of water is produced.

Having rebounded too far forward, the dam recedes once more. After a suffidently long time, the free
surface in front of the dam reaches a steady height. Some low amplitude waves are generated
during the oscillation of the dam in a similar fashion as a flap type wavemaker.

The dam, having receded too far “sling shots” back to the left. A small wave is produced on the free
surface in front of the dam during this motion.

Free survace profile (Fn = 0.20, flood depth = 3.0 m, pint = 1.20 m H O)2

Fig. 5. Sample displacement
pro®le for an in¯atable dam in
a ¯ood
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the point where the thin region of water over the dam
collapses. When this occurs, the nodes on the free surface
and the dam touch and break down the numerical com-
putations. The over¯ow pressure found here will be con-
servative as the dam may actually be barely able to contain
the ¯ood after the numerical computations break down.

Figure 9 is a plot of the trace of several nodes on the
surface of the dam during a typical run. The node on the
upstream side of the dam, at about the initial water level,
displaces down and away from the ¯ood, then returns on

nearly the same path. The node on the top of the dam
follows an orbital path such that it does not retrace its path
as it ``bounces back''. The node on the downstream side of
the dam displaces forward and backward on about the
same path.

Figure 10 is a plot of the motion of the top node as a
function of time. As seen in the plot, the motion in the x
direction appears to be almost sinusoidal. For a ¯ood
depth of two meters, ¯ood Froude number of 0.3, and an
internal pressure of two meters of water, the period of this
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The flood in this plot is running from left to right. A sufficient distance from the dam it has a non-dimensional
depth of 1.0 and a  Froude number (non-dimensional velocity) of 0.20. This corresponds to a flood depth
of 3.0 meters impinging on a 4.5 meter tall  dam with a uniform upstream velocity of 1.09 m/s. The dam is a
rigid semicircle. During the begining of the flood the water piles up  in front of the dam and a slug or bore of
water is rejected to the left.

As time progresses the flood reaches a steady height over some distance in front of the dam. This distance
increases over time, as the bore of water continues to the left . Note that there are fewer waves for a rigid
dam than for the flexible one.

Fig. 7. Plot of the free surface
response for a rigid dam
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motion is roughly constant at about 0.377 seconds. The
motion in the y direction is not as uniform. This shows
that there is more than one mode being excited. The am-
plitude of the motion of a point on the dam is damped out
during the run due to wave generation on the free surface.

3.2.2
Stresses in the dam
Figure 11 is a plot of the static stress (upstream ¯ood
speed = 0) in the dam for a low in¯ation pressure. The

tensile stress is roughly constant over the surface of the
dam. For an internal pressure of 1.75 meters of water,
and a water depth of 3.0 meters the mean circumfer-
ential stress is 75 KPa. The mean transverse stress is
35 KPa. The maximum stress due to bending occurs
about one meter from the bottom on the ¯ood side of
the dam. For this case, the maximum stress due to a
combined state of bending and tension is about
340 KPa. For low pressures the bending stress is signi-
®cant.
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The flood in this picture is running from left to right. A sufficient distance from the dam it has a non-dimensional
depth of 1.0 and a Froude number (non-dimensional velocity) of 0.30. This corresponds to a flood depth of three
meters impinging on a 4.5 meter taIl dam with a uniform upstream velocity of 1.63 m/s and an internal pressure of
1.75 meters of water  During the beginning of the motion the water piles up in front of the dam as it recedes to the
right, in the flow direction.

As time progresses, the dam is pushed further to the right. As it is pudhed over the height decreases,
and eventually the flood water starts to go over the top of the dam.

Fig. 8. Sample displacement pro-
®le for an in¯atable dam during
over¯ow
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Figure 12 is a plot of the static stresses in the dam for
the rupture pressure in a 3.0 meter deep ¯ood. For high
pressures, closer to the rupture pressure, the bending
stress is insigni®cant. For an internal pressure of 4.85
meters of water (the rupture pressure for this depth) and a
water depth of 3.0 meters, the mean circumferential stress
roughly equals the maximum stress (through the thick-
ness). The mean circumferential stress is 19.5 MPa, and
the mean transverse stress is 8.82 MPa.

Figure 13 contains sample results for the dynamic stress
¯uctuation with time at a node on the top of the dam. The
stresses at other locations in the dam are qualitatively
similar to this sample. It is an interesting to note that the
¯ood actually lowers the stresses in the dam material. As
Fig. 13 indicates, as time increases, the mean stress drops.
As a result, the highest stress occurs near the beginning of

the run, and the dynamic stress ¯uctuation is only about
10% of the total stress. Therefore, if the dam is going to
rupture, it will most likely occur at the beginning under
static loading. This may be explained by the fact that the
water depth in front of the dam increases due to the ¯ood.
The increasing hydrostatic pressure outside the dam par-
tially counteracts the pressure inside the dam. This results
in decreased stresses in the dam.

3.2.3
The operational envelope
Figures 14 and 15 are plots of the serviceability regions for
¯ood depths of two and three meters, respectively. A
comparison of these two plots reveals that for a lower ¯ood
depth, a faster moving ¯ood can be suppressed. In addi-
tion, the rupture pressure for a lower ¯ood depth is
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actually lower than that for a higher ¯ood. This is due to
the partial cancellation of external and internal pressures.
A higher depth counteracts more of the applied internal
pressure, and actually stabilizes the dam against rupture.
From Figs. 14 and 15, it may be concluded that existing
in¯atable dams are quite effective in suppressing ¯oods for
a relatively wide range of ¯ood velocities.

4
Conclusions
The effectiveness of a ¯exible in¯atable dam to suppress
¯oods in emergencies was studied numerically. Such
structures have been used for water storage and irrigation
but not to control ¯oods. To this end, the dynamic, non-
linear response of an in¯atable dam to a ¯ood was studied
for a range of ¯ood depths and ¯ood speeds. The nu-
merical analysis was carried out in the time domain. A

fully nonlinear Eulerian-Lagrangian formulation was used
to simulate the ¯uid ¯ow. The dam is modeled as an elastic
shell in¯ated with air and simply supported from two
points. The ®nite element method was employed to de-
termine the dynamic response of the structure using
ABAQUS with a shell element.

The dimensions and material properties of the structure
used in the present study are representative of existing
structures. No effort was made in the present work to vary
the material properties and the dimensions of the structure
and optimize the structural performance for a ®xed cost.
The serviceability regions for ¯ood depths of two and three
meters, respectively were obtained as functions of the in-
ternal pressure. If this pressure is too low, the water will
over¯ow the dam. If it is too high, the dam will rupture.
From Figs. 14 and 15, it may be concluded that existing
in¯atable dams are quite effective in suppressing ¯oods for
a relatively wide range of ¯ood velocities.
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